Sensitivity of Electric Dipole Polarizability to Bulk Nuclear Properties

August 3, 2018

Ethan Hunt Advisers: Giacomo Bonasera and Dr. Shalom Shlomo

Introduction	
000	

æ

イロト イ団ト イヨト イヨト

Plan

Introduction

Hartree-Fock RPA

Results

Why study Giant Resonances?

- Determine properties of nuclear matter
- Helps to determine Energy Density Functional
- Nuclear Equations of State
- Better understand nuclear structure
- Understand astrophysical phenomena
 - Neutron Stars
 - Super Novae
 - R-Process
- Defense purposes

Giant Resonances

- Classically we look at it as the oscillation of liquid drop
- Quantum mechanically, it is the collective motion of individual nucleons in the nucleus: coherent sum of particle hole excitations
- Isovector Giant Dipole Resonance (IVGDR)
 - Dipole oscillation of protons against neutrons
- Experimental techniques
 - Photon excitation of nucleus

Theoretical Approach

To determine the dynamics, we construct our Hamiltonian, and plug it into the Schrödinger equation:

$$H = T + V = \sum_{i} \frac{p_i^2}{2m_i} + \sum_{i < j} V_{i,j}$$

$$H \ket{\Phi} = E \ket{\Phi}$$

- That's too many terms!
- We use the mean field approximation
 - Best for large A nuclei

The Skyrme Interaction

We use the Skyrme Interaction

- An effective 10 parameter mean field potential
- Contact term potential
- Hundreds of published interactions, we use 33
- ► Has the form:

$$\begin{split} V_{i,j}^{NN} &= t_0 (1 + x_0 P_{ij}^{\sigma}) \delta(\vec{r_i} - \vec{r_j}) + \frac{1}{2} t_1 (1 + x_1 P_{ij}^{\sigma}) \left[\vec{k}_{ij}^2 \delta(\vec{r_i} - \vec{r_j}) \delta(\vec{r_i} - \vec{r_j}) \vec{k}_{ij}^2 \right] + \\ t_2 (1 + x_2 P_{ik}^{\sigma}) \vec{k}_{ij}^2 \delta(\vec{r_i} - \vec{r_j}) \vec{k}_{ij} + \frac{1}{6} t_3 (1 + x_3 P_{ij}^{\sigma}) \rho^{\alpha} \left(\frac{\vec{r_i} + \vec{r_j}}{2} \right) \delta(\vec{r_i} - \vec{r_j}) + \\ & i W_0 \vec{k}_{ij} \delta(\vec{r_i} - \vec{r_j}) (\sigma_i + \sigma_j) \vec{k}_{ij} \end{split}$$

The Skyrme Interaction

We use the Skyrme Interaction

- An effective 10 parameter mean field potential
- Contact term potential
- Hundreds of published interactions, we use 33
- ► Has the form:

$$\begin{split} V_{i,j}^{NN} &= t_0 (1 + x_0 P_{ij}^{\sigma}) \delta(\vec{r_i} - \vec{r_j}) + \frac{1}{2} t_1 (1 + x_1 P_{ij}^{\sigma}) \left[\vec{k}_{ij}^2 \delta(\vec{r_i} - \vec{r_j}) \delta(\vec{r_i} - \vec{r_j}) \vec{k}_{ij}^2 \right] + \\ t_2 (1 + x_2 P_{ik}^{\sigma}) \vec{k}_{ij}^2 \delta(\vec{r_i} - \vec{r_j}) \vec{k}_{ij} + \frac{1}{6} t_3 (1 + x_3 P_{ij}^{\sigma}) \rho^{\alpha} \left(\frac{\vec{r_i} + \vec{r_j}}{2} \right) \delta(\vec{r_i} - \vec{r_j}) + \\ & i W_0 \vec{k}_{ij} \delta(\vec{r_i} - \vec{r_j}) (\sigma_i + \sigma_j) \vec{k}_{ij} \end{split}$$

The Skyrme Interaction

We use the Skyrme Interaction

- An effective 10 parameter mean field potential
- Contact term potential
- Hundreds of published interactions, we use 33
- ► Has the form:

$$V_{i,j}^{NN} = t_0 (1 + x_0 P_{ij}^{\sigma}) \delta(\vec{r_i} - \vec{r_j}) + \frac{1}{2} t_1 (1 + x_1 P_{ij}^{\sigma}) \left[\vec{k}_{ij}^2 \delta(\vec{r_i} - \vec{r_j}) \delta(\vec{r_i} - \vec{r_j}) \vec{k}_{ij}^2 \right] + t_2 (1 + x_2 P_{ik}^{\sigma}) \vec{k}_{ij}^2 \delta(\vec{r_i} - \vec{r_j}) \vec{k}_{ij} + \frac{1}{6} t_3 (1 + x_3 P_{ij}^{\sigma}) \rho^{\alpha} \left(\frac{\vec{r_i} + \vec{r_j}}{2} \right) \delta(\vec{r_i} - \vec{r_j}) + i W_0 \vec{k}_{ij} \delta(\vec{r_i} - \vec{r_j}) (\sigma_i + \sigma_j) \vec{k}_{ij}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Hartree-Fock Calculation

We assume a slater determinant of single particle wave functions:

$$\Phi(x_1, x_2, \dots, x_n) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \phi_1(x_1) & \phi_1(x_2) & \dots & \phi_1(x_n) \\ \phi_2(x_1) & \phi_2(x_2) & \dots & \phi_2(x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_n(x_1) & \phi_n(x_2) & \dots & \phi_n(x_n) \end{vmatrix}$$

Now we use a variational approach to minimize the matrix element (Φ| H |Φ) thus giving our ground state

< ロ > < 同 > < 回 > < 回 > .

Hartree-Fock Equations

• We minimize $\langle \Phi | H | \Phi \rangle$ using a pertubutive method

$$\phi_i \to \phi_i + \delta \phi_i$$

This gives rise to the HF equation for the ground state $-\frac{\hbar^2}{2m}\Delta\phi_i(\mathbf{r}) + \phi_i U_H(\mathbf{r}) - \int U_F(\mathbf{r},\mathbf{r'})\phi_i(\mathbf{r'}) d^3\mathbf{r'} = e_i\phi_i(\mathbf{r})$ $U_H(\mathbf{r}) = \sum_j \int \phi_j^*(\mathbf{r'})V(\mathbf{r},\mathbf{r'})\phi_j(\mathbf{r'}) d^3\mathbf{r'}$ $U_F(\mathbf{r},\mathbf{r'}) = \sum_i \phi_j^*(\mathbf{r'})V(\mathbf{r},\mathbf{r'})\phi_j(\mathbf{r})$

Random Phase Approximation (RPA)

Strength function given by:

$$S(E) = \sum_{n} |\langle 0| F_{LM} |n\rangle|^2 \delta(E - E_n)$$

$$F_{LM} = \frac{Z}{A} \sum_{n} f(r_n) Y_{LM}(n) - \frac{N}{A} \sum_{p} f(r_p) Y_{LM}(p)$$

• F_{LM} is the scattering operator, and L = 1 for IVGDR

- Moments $m_k = \int_0^\infty E^k S(E) dE$ are calculated from RPA
- We can investigate properties of nuclear resonance

$$\alpha_D = \frac{8\pi e^2}{9}m_{-1} \qquad E_{centroid} = \frac{m_1}{m_0}$$

Δr_{np} vs. α_D ?

- P. G. Reinhard, W. Nazarewicz PRL 81.051303 (2010)
 - Take one interaction
 - Vary one parameter at a time (J on left, reduced mass on right)
 - Different interactions give different correlations

Range of our 33 Interactions:							
Parameter	Minimum	Maximum					
$ ho_0$	0.156	0.175					
E/A	15.32	16.33					
K	200.8	258.1					
J	26.69	37.4					
L	-29.38	129.33					
K _{sym}	-401.43	159.57					
Q _{sym}	11.73	883.05					
K $ au$, V	-498.11	-271.61					
m*/m	0.56	1					

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Pearson Linear Correlation Coefficients

- Calculates how linearly correlated two sets, (X, Y) are
 Outliers from a set can significantly impact correlation
 P = cov(X,Y)/(σ_Xσ_Y) = ∑_i(x_i-x̄)(y_i-ȳ)/(√∑_i(x_i-x̄)²√∑_i(y_i-ȳ)²)
 P ∈ [-1,1]
 |P| > 0.8 High correlation
 0.8 ≥ |P| > 0.6 Medium correlation
 0.6 ≥ |P| > 0.5 Low correlation
 - $0.5 \ge |P|$ No correlation

∃ ▶

Calculated Correlations with α_D

 To study sensitivity of α_D to BNM values we calculate Pearson linear correlation coefficients

Nucleus	Δr_{np}	J	L	Ksym	Qsym	K $ au$, V
⁴⁰ Ca	-0.57	-0.43	0.47	0.29	-0.61	-0.52
⁴⁸ Ca	0.42	-0.30	0.39	0.26	-0.51	-0.43
⁶⁸ Ni	0.20	0.37	0.70	0.59	-0.84	-0.60
⁹⁰ Zr	0.34	0.25	0.52	0.42	-0.68	-0.44
¹²⁰ Sn	0.58	0.26	0.60	0.51	-0.75	-0.46
²⁰⁸ Pb	0.67	0.19	0.61	0.57	-0.77	-0.42

Looking at correlated properties

- Try to isolate values of BNM properties that systematically under or over estimate experiment
- Rule out certain interactions that have consistently bad predictions
- Very difficult given how low correlations are

 α_D vs. Δr_{np}

α_D vs Q_{sym}

Conclusions

- Only weak-medium correlation between α_D and Δr_{np}
- α_D is only low-medium correlated with terms from equation of state besided Q_{svm}
- Cannot put reasonable bounds on Δr_{np} or BNM properties with current theory

Sources

P. G. Reinhard and W. Nazarewicz PRL 81, 051303 (2010)
 J. Birkhan et al. PRL 118, 252501 (2017) (^{40,48}Ca Data)
 D.M. Rossi et al. PRL 111, 242503 (2013) (⁶⁸Ni Data)
 T. Hashimoto et al. PRL 92 031305 (2015) (¹²⁰Sn Data)
 A. Tamii et al. PRL 107, 062502 (2011) (²⁰⁸Pb Data)

(日)

э

Acknowledgments

We would like to thank the NSF for funding this research NSF grant $\# {\rm PHY}\mbox{-}1659847$

Thank you!

Any questions?

▲日 ▶ ▲ 聞 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @